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We study the Landauer resistivity of the Kronig–Penney model which has
various behavior depending on the potential and the Fermi energy. In the case
of the Sturmian quasiperiodic potential, we discuss examples in which lim inf of
it is zero.
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1. INTRODUCTION

The subject of this paper is the Landauer resistivity of the Kronig–Penney
model defined by

H := −
d2

dx2+ C
j ¥ Z

V(j) d(x − j), on L2(R).

More precisely, H is the Laplacian with boundary conditions on integer
points:

H := −
d2

dx2 on D,

where

D :={k ¥ H1(R) 5 H2(R0Z) : kŒ(j+) − kŒ(j − )=V(j) k(j), j ¥ Z}.



Hp(W) is the Sobolev space of order p on W and V(j) ¥ R, j ¥ Z. H is self-
adjoint (1, 2) and can be regarded as a model describing non-interacting elec-
trons on the quantum wire. We would like to consider the Landauer resis-
tivity of H which, however, is defined on Hamiltonians with compactly
supported potentials. Thus we first consider the truncated Hamiltonian so
that it has n d-barriers.

Hn := −
d2

dx2+ C
n

j=1
V(j) d(x − j), on L2(R).

In other words, Hn is the Laplacian on the domain

Dn :={k ¥ H1(R) 5 H2(R0Yn) : kŒ(j+) − kŒ(j − )=V(j) k(j), j ¥ Yn},

where Yn :={1, 2,..., n}. We fix the Fermi energy EF > 0 arbitrary and set
k=`EF. The Jost solution k of the equation Hnk=EFk is defined so that
it satisfies following condition.

k(x)=˛ce ikx+de−ikx, (if x < 1), c, d ¥ C,

e ikx, (if x > n).
(1.1)

We do not consider the case where EF [ 0, for the Jost solution can not be
defined. c=c(n, EF), d=d(n, EF) are determined by condition (1.1) and the
transmission probability y(n, EF) and the Landauer resistivity rL(n, EF) are
defined by (3)

y(n, EF) :=
1

|c(n, EF)|2 , rL(n, EF) :=
1 − y(n, EF)

y(n, EF)
.

We derive an explicit representation of rL(n, EF) in terms of the transfer
matrix of H in the next section. It turns out that 1 [ |c(n, EF)| < . and
hence y(n, EF) and rL(n, EF) are always well-defined. If limn Q . rL(n, EF)
exists, it may be reasonable to regard it as the electrical resistivity of H
corresponding to the Fermi energy EF > 0. This motivates us to study the
behavior of rL(n, EF) as n tends to infinity, which is the purpose of this
paper. Some of them are review of known facts, while that in the case of
quasiperiodic potential is new.

In Section 2, we introduce the transfer matrix and compute the
transmission probability y(n, EF) and the Landauer resistivity rL(n, EF)
explicitly.
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In Sections 3–5, we review spectral properties of H and study the
behavior of rL(n, EF) as n tends to infinity, when V is periodic, random,
and Sturmian quasiperiodic respectively. Section 6 is a summary of results.

2. PRELIMINARIES

First of all, we introduce the transfer matrix of H. The solution k to
the equation Hk=k2k (k > 0, k2=EF) has the following form.

k(x)=Cje ik(x − j)+Dje−ik(x − j), x ¥ (j, j+1), Cj, Dj ¥ C. (2.1)

By the boundary condition, t(Cj, Dj) satisfies

RCj

Dj

S=T(j, k2)RCj − 1

Dj − 1

S , j ¥ Z,

where the (elementary) transfer matrix T(j, k2) is given by

T(j, k2) :=R11+
V(j)
2ik

2 e ik V(j)
2ik

e−ik

−
V(j)
2ik

e ik 11 −
V(j)
2ik

2 e−ik

S .

Let G be a subgroup of SL(2, C)

G :=˛R a b

b a
S : a, b ¥ C, |a|2 − |b|2=1ˇ . (2.2)

Then T(j, k2) ¥ G and we can write

W(n, k2) :=T(n, k2) T(n − 1, k2) · · · T(1, k2)

=1a(n, k2)
b(n, k2)

b(n, k2)
a(n, k2)

2 ,

where a(n, k2), b(n, k2) ¥ C, |a(n, k2)|2 − |b(n, k2)|2=1. According to (1.1),
we need to derive c=c(n, k2), d=d(n, k2) ¥ C such that

Re ikn

0
S=W(n, k2)R c

d
S .
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Direct computation gives

y(n, k2)=
1

|a(n, k2)|2 , rL(n, k2)=|b(n, k2)|2. (2.3)

Hence the Landauer resistivity rL(n, k2) is equal to square of the absolute
value of (1, 2)-element of W(n, k2). We note rL(n, k2) is related to the
Hilbert–Schmidt norm of W(n, k2).

rL(n, k2)=
||W(n, k2)||2

HS − 2
4

, (2.4)

where ||A||HS=`tr(AgA) is the Hilbert–Schmidt norm. rL(n, k2) is also
related to the generalized eigenfunctions of H. In fact, b(n, k2)=1

2 (k(j)+
k

−(j+)
ik ) where k is the solution to Hk=k2k with the initial condition

k(0)=− k
−(0+)
ik =1.

3. PERIODIC POTENTIAL

In the rest of this paper, we compute rL(n, EF) and study its behavior
as n tends to infinity. In this section, we consider the case in which V (– 0)
is periodic with period L: V(j)=V(j+L), j ¥ Z. By the direct integral
decomposition and analytic perturbation theory, the spectrum of H is seen
to be absolutely continuous (2) which has the following representation.

s(H)={E ¥ R : |D(E)| [ 2},

where D(E) :=tr W(L, E) is the discriminant. In Section 2, we defined
T(j, E) only when E > 0. When E < 0, the branch of k=`E is taken so
that I `E \ 0. When E=0, we take different basis of the solution to
Hk=Ek. The behavior of rL(n, k2) as n Q . is summarized as follows.

Theorem 3.1 (periodic case).

(1) If EF ¥ r(H), then rL(n, EF) diverges exponentially.

(2) If |D(EF)| [ 2, then for except at most countable set A( … R), we
have

(i) if |D(EF)|=2, then rL(n, EF) diverges like O(n2) as n Q ..

(ii) if |D(EF)| < 2, then rL(n, EF)=O(1) as n Q . and does not
converge. Moreover, for a.e. EF in s(H), {rL(n, EF); n ¥ N}=1L

j=1 [cj(EF),

342 Kaminaga and Nakano



dj(EF)] for some 0 [ cj(EF) < dj(EF), j=1,..., L. Otherwise {rL(n, EF);
n ¥ N} consists of finitely many points.

(3) if EF ¥ A, then {rL(n, EF); n ¥ N} consists of finitely many points.

Remark 3.1. The statement of Theorem 3.1 becomes clear in many
specific cases. When V(j)=V ( ] 0) is constant for instance, A=”.
|D(EF)|=2 if and only if EF ¥ “s(H), and |D(EF)| < 2 if and only if
EF ¥ s(H)° (s(H)° is the set of interior points of s(H)). In the case of
(2)(ii), c(EF)=0 and d(EF)=V2/EF(4 − D(EF)).

Remark 3.2. The dichotomy in (2)(ii) in Theorem 3.1 originates in
that h/p ¥ Q or ¥ Qc, where 2 cos h=D(EF), h ¥ (0, p). In these cases,
the corresponding generalized eigenfunction is periodic or quasiperiodic
respectively.

Proof. We first consider the points where n=jL, j ¥ N. Then the
problem is reduced to the computation of (1, 2)-element of W(L, E) j

(n=jL). Let l, l−1 (¥ C) be eigenvalues of the matrix W(L, E). We have
the following expressions for W(L, E) j. If |tr W(L, E)| ] 2, then l ] l−1

and

W(L, E) j=
l j − l−j

l − l−1 W(L, E) −
l j − 1 − l−j+1

l − l−1 I, (3.1)

where I is the 2 × 2-identity matrix. If tr W(L, E)= ± 2, then W(L, E) has
a multiple eigenvalue l= ± 1 respectively and

W(L, E) j=jl j − 1W(L, E) − (j − 1) l jI. (3.2)

By (3.1), (3.2), we compute rL(jL, EF).

Case (a). |D(EF)| > 2: Let l ¥ R be the eigenvalue of W(L, E) with
|l| > 1. Then l=(sgn l) eh for some h > 0 and by (2.3),

rL(jL, EF)=1 sinh jh
sinh h

22

|b(L, EF)|2, j ¥ Z. (3.3)

We note, since W(L, E) ¥ G and |tr W(L, E)| > 2, b(L, EF) ] 0.

Case (b). |D(EF)|=2: l= ± 1 and

rL(jL, EF)=j2 |b(L, EF)|2. (3.4)
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Case (c). |D(EF)| < 2: l=e ih for some h ¥ (0, p) and

rL(jL, EF)=1 sin jh
sin h

22

|b(L, EF)|2, j ¥ Z. (3.5)

When |D(EF)| > 2, (3.3) implies b(jL, EF) diverges exponentially as
j Q .. For intermediate points, that is, points of the form: n=jL+l,
(1 [ l [ L − 1), we can see ||W(n, EF)||op diverges exponentially (|| · ||op is the
operator norm), or alternatively we can use positivity of the Lyapunov
exponent discussed in later sections.

When |D(EF)| [ 2, it is possible that b(L, EF)=0 (a simple example is:
L=2, V(1)+V(2)=0, and EF=(np)2, n ¥ N). This leads us to set

A :={EF ¥ s(H) : b(L, EF)=0},

which consists of at most countably many isolated points. Since the state-
ment of theorem is obvious for EF ¥ A, let EF ¨ A. When |D(EF)|=2, (3.4)
implies rL(jL, EF)=j2 |b(L, EF)|2 which diverges in the order of n2. More-
over, Lemma 3.1 given below shows b(jL+l, EF)=al j+bl for some al,
bl ¥ C, and al ] 0 unless b(L, EF)=0. When |D(EF)| < 2, direct computa-
tion gives b(jL+l, EF)=c l sin jh+dl cos jh for some c l, dl ¥ C, c ldl ] 0.

Now the statement of Theorem 3.1 follows immediately from these
considerations. L

Lemma 3.1. Suppose EF ¨ A and |D(EF)|=2. Then b(jL+l)=
al j+bl for some al, bl ¥ C, al ] 0.

Proof. We suppose l=1. The proof for l=−1 is similar. Letting
B(l, EF) :=T(l, EF) T(l − 1, EF) · · · T(1, EF) (1 [ l [ L − 1), we have

b(jL+l, EF)=j(BW(1, 2) − b(l, EF))+b(l, EF),

where BW(1, 2) is the (1, 2)-element of the matrix B(l, EF) W(L, EF). Hence
b(jL+l, EF)=al j+bl for some al, bl ¥ C. Next we suppose BW(1, 2)=
b(l, EF) and would like to deduce b(L, EF)=0. Since W(L, EF), B(l, EF) ¥ G,
we can write

W(L, EF)=Raw, bw,

bw aw

S , aw, bw ¥ C, |aw |2 − |bw |2=1,

B(l, EF)=Rc l dl

dl c l

S , c l, dl ¥ C, |c l |2 − |d|2=1.
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Since l=1 and EF ¨ A, aw=1+ia for some a ¥ R, a ] 0. BW(1, 2)=
b(l, EF) means c lbw+dlaw=dl and thus

dl=
c lbw

1 − aw
=

c lbw

ia
.

Substituting it to the equation |c l |2 − |dl |2=1, we must have

|c l |2 11 −
|bw |2

a2
2=1.

However, |bw |2=|aw |2 − 1=a2 implies LHS =0. L

Remark 3.3. If EF ¥ E :={(np)2 : n ¥ N} in which case |D(EF)|=2,
the computation becomes easier. In fact, {T(j, EF)}j ¥ Z commutes each
other so that we have b(n, EF)= 1

2i `EF
;n

j=1 V(j). Hence limn Q .

rL(n, EF)

n2 =
1

4EF
(1

L ;L
j=1 V(j))2. We note, according to the relation found in ref. 4,

s(H) 5 E is related to that of the free Laplacian on l2(Z), (5) while the
computation above implies the behavior of wave functions are not.

4. RANDOM POTENTIAL

Let {V(j)}j ¥ Z={Vw(j)}j ¥ Z be the independent, identically distributed
random variables on a probability space (W, F, P). We assume the distri-
bution of Vw(0) has the density function which is bounded and compactly
supported contained in the positive real line. That is, there exists constants
c1, c2 such that 0 < c1 [ Vw(0) [ c2 < ., a.s. Then (6) s(H)=S, a.s. where

S=3E ¥ (0, .) : :2 cos `E+Vinf
sin `E

`E
: [ 24 , Vinf :=ess − inf

w ¥ W
Vw(0).

Moreover, the spectrum of H on Ec is almost surely pure point with expo-
nentially decaying eigenfunctions (Anderson localization). The positivity of
the Lyapunov exponent for EF ¨ E guaranteed by Furstenberg’s theorem (7)

and Remark 3.3 for EF ¥ E give the following result.

Theorem 4.1 (random case).

(1) If EF ¨ E, then rL(n, EF) diverges exponentially P-a.s.

(2) If EF ¥ E, then limn Q .

rL(n, EF )

n2 = 1
4EF

(EVw(0))2, P-a.s. where E
stands for taking expectations.
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Remark 4.1. In refs. 8–11, they considered the charge transport on
the multidimensional Anderson model and showed it is zero almost surely
which is consistent with the theorem above.

5. QUASIPERIODIC POTENTIAL

In this section, we consider the following quasiperiodic potential

V(j)=Vh(j) :=l1qA(F(aj)+h)+l2qAc(F(aj)+h), j ¥ Z,

where l1, l2 ¥ R, l1 ] l2, A=[1 − a, 1) … R/Z, a ¥ (0, 1) 5 Qc, and h ¥ R/Z.
F: R Q R/Z is the canonical projection. The spectrum of H is purely sin-
gular continuous and is a Cantor set (i.e., nowhere dense closed set without
isolated points) for (l1, l2)-a.e. in R2 and for any h ¥ R/Z. (12–16) Moreover,
the spectral measure is absolutely continuous w.r.t. Hb: the Hausdorff
measure of dimension b for some b > 0 (which follows from arguments in
refs. 17–19), if a is a bounded density number. To state the results below,
we consider the continued fraction expansion of a.

a=[0, a1(a), a2(a),...] :=
1

a1(a)+
1

a2(a)+
z

, an(a) ¥ N.

The associated rational approximation pn/qn satisfies (20)

pn+1=an+1(a) pn+pn − 1, (5.1)

qn+1=an+1(a) qn+qn − 1, n \ 0, (5.2)

with p0=0, q0=1, p−1=1, q−1=0. We say a is a bounded density number
if lim supn Q .

1
n ;n

j=1 aj(a) < . (a typical example is the golden number:
a=(−1+`5)/2). A simple guess by the fact s(H)=“s(H) and argument
in Theorem 3.1 leads us to a speculation that rL(n, k2) would grow poly-
nomially. However, the situation may be more complicated as will be
discussed later.

Theorem 5.1 (quasiperiodic case).

(1) If EF ¥ r(H), then rL(n, EF) diverges exponentially.

(2) (refs. 21–24) If EF ¥ s(H) and if a is a bounded density number,
then rL(n, EF) grows at most polynomial order.

(3) If EF ¥ E, then limn Q .

rL(n, EF )

n2 = 1
4EF

(al1+(1 − a) l2)2.
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Remark 5.1.

(1) This result contrasts with those in previous sections. The behav-
ior of r(n) is known to be complicated. (21)

(2) Spectral properties of H is related to the behavior of tr W(qn, E)
as n tends to .. In fact, s(H) coincides with the set where the sequence
{tr W(qn, E)}.

n=1 (={2Ra(qn, E)}.

n=1) is bounded. (14, 5) On the other hand,
the behavior of {rL(qn, EF)}.

n=1 is related to that of {Ia(qn, EF)}.

n=1.
Therefore we may say that the Landauer resistivity reflects some aspects of
the systems which is different from spectral properties.

(3) If V is of almost Mathieu type (that is, Vh(j)=l cos(2p(aj+h)),
l ¥ R, a ¨ Q, h ¥ R/Z), by Herman’s theorem, (25, 26) the Lyapunov exponent
is positive if EF ¥ B :={E ¥ R : |l sin `E/`E| > 2}. Hence rL(n, EF)
diverges exponentially. On the other hand, if a is a Liouville number,
s(H) 5 B (if it is nonempty) is shown to be singular continuous for
a.e. l. (27) This fact contrasts with Theorem 5.1.

The proof of (1) in Theorem 5.1 follows from positivity of the Lyapunov
exponent due to the Combes–Thomas argument (28) which is roughly given
by the distance between EF and s(H). The proof of (3) in Theorem 5.1
follows from Remark 3.3.

We study some properties of rL(n, EF) further assuming some proper-
ties on the behavior of tr W(qn, EF). We first assume

lim
n Q .

an(a)=., (5.3)

in which case the quasiperiodic potential V(j) is ‘‘close to periodic’’ so that
we expect the argument in Theorem 3.1 would be useful.

Proposition 5.1. Let h=0, EF ¥ s(H) and assume (5.3).

(1) If lim supn Q . |tr W(qn, EF)| > 2, then lim supn Q . rL(n, EF)=..
(2) If lim infn Q . |tr W(qn, EF)| < 2, and {rL(qn, EF)}.

n=1 is bounded,
then lim infn Q . rL(n, EF)=0.

To prove Proposition 5.1, we prepare

Lemma 5.1. Let l, l−1 ¥ C (|l| \ 1) be eigenvalues of W(qn, EF).

(1) If |tr W(qn, EF)| < 2, then

b(kqn, EF)=
sin kh

sin h
b(qn, EF), 1 [ k [ an+1(a),

where h ¥ R is determined by l=e ih.
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(2) If |tr W(qn, EF)| > 2, then

b(kqn, EF)=
sinh kh

sinh h
b(qn, EF), 1 [ k [ an+1(a),

where h > 0 is determined by l=(sgn l) eh.

Proof. Since V(qn+k)=V(k), (1 [ k [ qn+1 − 2, n \ 1), (14) we have
W(kqn, EF)=W(qn, EF)k, k=1, 2,..., an+1. Hence the proof reduces to the
computation of some powers of matrices which is done in the proof of
Theorem 3.1. L

Proof of Proposition 5.1.

(1) By assumption, there exists d > 0 and a subsequence nŒ=n(k)
such that |tr W(qn, EF)| > 2+d. We rewrite nŒ as n. Let l(n) (|l(n)| > 1) be
an eigenvalue of W(qn, EF). We consider the triangulation of W(qn, EF) by
an unitary matrix U(n)

V(n, EF) :=Ug(n) W(qn, EF) U(n)=Rl(n) c(n)

0 l(n)−1
S , c(n) ¥ C.

Then

V(n, EF)g V(n, EF)=R |l(n)|2 l(n) c(n)

c(n) l(n) |l(n)|−2+|c(n)|2
S

and hence

||W(qn, EF)||2
HS \ |l(n)|2+|l(n)|−2=(tr W(qn, EF))2 − 2.

By (2.4), rL(qn, EF)=1
4 (||W(qn, EF)||2

HS − 2) > d1 for some d1 > 0. By Lemma
5.1(2),

rL(kqn, EF)=1 sinh kh(n)
sinh h(n)

22

rL(qn, EF) > 1 sinh kh(n)
sinh h(n)

22

d1,

(1 [ k [ an+1(a)). h(n) > 0 is determined by l(n)=(sgn l(n)) eh(n). Since
|l(n)+l(n)−1|=|tr W(qn, EF)| > 2+d, |l(n)| − 1 is bounded from below and
thus h(n) > d2 > 0 for some d2 > 0. On the other hand, since EF ¥ s(H),
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|tr W(qn, EF)| is bounded (Remark 5.1(2)). Therefore |h(n)| is bounded so
that |sinh h(n)| < C1 for some constant C1 > 0. Hence

rL(an+1(a) qn, EF) >
d1

C2
1

sinh2(an+1(a) d2).

Since limn Q . an(a)=., the result follows.

(2) Let h(n) ¥ (0, p) determined by l(n)=e ih(n). There exists h ¥

[0, p] and a subsequence h(nŒ) such that h(nŒ) Q h as n Q .. Due to the
assumption lim infn Q . |tr W(qn, EF)| < 2, we can assume h ¥ [d1, p − d1] for
some d1 > 0. We rewrite h(n) instead of h(nŒ). Let rk/sk, rk ¥ N, sk ¥ N be
the Diophantine approximation of h/p. Then we have (20)

h

p
¥ 1 rk − 1

sk+1

sk
,

rk+ 1
sk+1

sk

2 .

We fix k ¥ N arbitrary. Since h(n) Q h, there exists N=N(k) ¥ N such that
if n \ N, we have

h(n)
p

¥ 1 rk − 1
sk+1

sk
,

rk+ 1
sk+1

sk

2 .

If h/p ¥ Q, then h/p=p/q for some p, q ¥ N and

h(n)
p

¥ 1p − EŒ

q
,

p+EŒ

q
2 ,

where EŒ > 0 can be taken arbitrary small, when n is large enough. Then the
rest of this proof also works. Now we have

skh(n)
p

¥ 1 rk −
1

sk+1
, rk+

1
sk+1

2 .

We fix E > 0 arbitrary small. Since limk Q . sk=., by taking k sufficiently
large, we have sin skh(n) ¥ (−E, E), n \ N(k). Since h(n) converges to h ¥

[d1, p − d1], |sin h(n)| > d2 > 0 for some d2 > 0. By Lemma 5.1(1),

rL(lqn, EF)=:sin lh(n)
sin h(n)

:2 |b(n, EF)|2,
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for 1 [ l [ an+1(a). By assumption, |b(n, EF)| < C2 for some C2 > 0. Thus if
we could let l=sk, then

rL(skqn, EF) [
C2

2

d2
2

|sin skh(n)|2 [
C2

2E2

d2
2

.

However, because limn Q . an(a)=., an+1(a) \ sk for sufficiently large n. L

In what follows, we construct examples which satisfy the assumption
of Proposition 5.1(2). Let M(0, E) :=T(0, E), M(n, E) :=W(qn, E), r(n, E)
:=tr M(n, E). M(n, E) is known to satisfy the following recursive equation.(14)

M(n+1, E)=M(n − 1, E) M(n, E)an+1, n \ 1.

Since M(j, E) ¥ G, we can write

M(n, E)=R an bn

bn an

S , an, bn ¥ C, |an |2 − |bn |2=1.

The following lemma is Lemma 4.1 in ref. 16 which we also present here
for the sake of completeness.

Lemma 5.2. Fix E ¥ R. Suppose ak ¥ N, k=1,..., n, C > 0, R ¥ N,
d > 0 are given which satisfy

(i) |bk | [ C <k
l=1 (1+ 1

2l), k=1,..., n.

(ii) |r(k, E)| < 2 − 2dk, R [ k [ n, dk=d(1
2+

1
2k).

Then we can choose an+1 ¥ N such that M(n+1, E) :=M(n − 1, E) ×
M(n, E)an+1 satisfies

(1) |bn+1 | [ C <n+1
l=1 (1+ 1

2l),

(2) |r(n+1, E)| < 2 − 2dn+1.

Moreover, we have limn Q . an=..

Proof. Take hn ¥ (0, p) such that 2 cos hn=r(n, E). Pick an+1 ¥ N
and let M(n+1, E) :=M(n − 1, E) M(n, E)an+1. Then

M(n+1, E)=
sin an+1hn

sin hn
M(n − 1, E) M(n, E)

−
sin(an+1 − 1) hn

sin hn
M(n − 1, E).
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Set Ck=C <k
l=1 (1+ 1

2l). It is easy to see

|bn+1 | [ Cn{(2 `1+C2
n+1) |sin an+1hn |+|sin hn |}

1
|sin hn |

,

|Ran+1 | [ :sin an+1hn

sin hn

: (2+2C2
n)+1 − dn − 1.

Take E −

n, E'

n > 0 such that

(2 `1+C2
n+1) E −

n < |sin hn |
1

2n+1 ,

(2+2C2
n)

E'

n

|sin hn |
<

d

2n+1 .

Set En=min{E −

n, E'

n } and take an+1 ¥ N, an+1 \ n+1 such that |sin an+1hn |
< En. Then bn+1 and r(n+1, E) satisfy (1) and (2) in the statement of
Lemma 5.2 respectively. L

Remark 5.2. An example which satisfies the hypothesis of Lemma 5.2
is: l2=0, R=0, and EF ¥ {k2 ¨ E : |2 cos a1k+l1

k sin a1k| < 2}.

Take EF > 0 which satisfies the hypothesis of Lemma 5.2 and let
a=[0, a1, a2,...] ¥ Qc 5 (0, 1) be corresponding irrational number asso-
ciated with {an}n ¥ N given by Lemma 5.2. Then |tr W(qn, EF)| < 2 − d,
rL(qn, EF) [ C2 <.

n=1 (1+ 1
2n)2 < ., and thus a, EF satisfy the assumption

of Proposition 5.1(2). Therefore lim infn Q . rL(n, EF)=0 (in this case,
rL(n, EF) has at most polynomial growth even if a is not a bounded density
number). This example tells us, if limn Q . an(a)=., we can not expect to
have lower bound of rL(n, EF). We note, however, that ; l

n=1 rL(n, EF)
\ Clc for some c > 0 is shown (18, 19, 29) when qn [ Cn for some C > 0, where
c > 0 depends on l1, l2, EF, and C > 0.

6. CONCLUDING REMARKS

We studied and reviewed the behavior of the Landauer resistivity as
sample size tends to infinity when the potential is periodic, random, and
quasiperiodic. The results are summarized as follows.

(1) When EF ¥ r(H), the Landauer resistivity diverges exponentially
due to positivity of the Lyapunov exponent. This implies the conductivity
vanishes in such cases, which is consistent with well-known result of the
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band theory in solid state physics. On the other hand, if EF ¥ s(H), situa-
tion becomes different.

(2) in the case of periodic potential where s(H) is absolutely con-
tinuous, the Landauer resistivity is bounded but does not converge if
EF ¥ s(H) unless it diverges like n2. In this case {rL(n, EF) : n ¥ N} is a
closed interval or finitely many discrete points which is not stable under the
small variation of EF, reflecting the behavior of corresponding Bloch waves.

(3) in the case of random potential where s(H)0E is pure point with
exponentially decaying eigenfunctions, the Landauer resistivity diverges
exponentially, which implies zero conductivity. This fact is consistent with
calculations by Kubo-type formula done in Anderson model. (8–11)

(4) in the case of quasiperiodic potential where s(H) is generically
purely singular continuous, it is known that the Landauer resistivity grows
at most polynomial order. We found examples where lim infn Q . rL(n, EF)
is equal to zero.
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